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Abstract

This work pertains to the method for modification of silicon (Si) wafer morphology by metal-assisted chemical etching
(MacEtch) technique suitable for fabrication of antireflective Si surfaces. For this purpose, we made different Au catalyst
patterns on the surface of Si substrate. This modification allowed to obtain the close-packed Au nanodrop (ND) pattern
that generates the nanowires (NWs) and the well-separated Au NDs, which induce the nanopore (NP) formation. The
antireflective properties of these structures in comparison with NWs produced by the conventional Ag-MacEtch
method were analysed. The total surface reflectance of 1~7% for SiNWs and ~17% for SiNPs was observed over
the entire Si-absorbing region. Moreover, SiNWs prepared by Au-MacEtch demonstrate better antireflective properties in
contrast to those formed by conventional Ag-assisted chemical etching. So, the use of SiNWs produced by the modified
Au-MacEtch method as the antireflective material is favored over those prepared by Ag-MacEtch due to their
higher light absorption and lower reflectance. The possible reason of these findings is discussed.
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Background
Photovoltaic manufacturing is one of the most perspective
branches of modern industry, which develops intensively
and demonstrates larger percentage of electrical power
production growth [1]. To achieve a high-efficiency Si
solar cell (SC), antireflective layers/structures are inevit-
ably necessary [2–6]. Fine surface structures, comprising
features on the nanometer scale, can provide excellent
antireflective performance [3–6]. In this regard, a recently
developed metal-assisted chemical etching is a method
that produces anisotropic high aspect ratio nanowires
(NWs), which reduce optical loss, enhance optical absorp-
tion, and improve carrier extraction for high performance
and low-cost solar cells [7–13]. In addition to NWs, the
nanoporous Si surfaces prepared by MacEtch demostrate
good antireflective properties also. In particular, Peng et
al. showed that the efficiency of nanopore-based SCs can
be as high as 9.51% [14]. In their work [15], authors have
shown that nanoporous structures require several times

less Si by mass to obtain the same ultimate efficiency as
a standard Si wafer. In our previous works [16–19], we
showed that micro- and nanotexturization of the Si
wafer by chemical vapor deposition (CVD)-grown
SiNWs and MacEtch-ed nanopores enhance an optical
absorption spectra. However, because of random distri-
bution and non-controllable orientation of SiNWs, as a
result of vapor-liquid-solid crystal growth [20], the effi-
ciency of such SC was still low.
As it is well known, NWs or nanopores (NPs) can be

formed from different noble metal-catalyst patterns, e.g.,
Ag nanoparticle network is self-generated from AgNO3

solution [9, 21–23] or an Au thin film thermally deposited
on Si substrate [24]. The solution-based patterning is
simple and less expensive approach but doesn't provide
a good control over the produced feature size and
shape [25]. Moreover, the etch rate is ~10 times slower
than that of typical thin film catalyzed MacEtch [26].
The aim of this work is the modification of Si wafer

morphology by the MacEtch method for fabrication of
antireflective Si surfaces. The technological features of
MacEtch producing SiNWs and SiNPs with the right
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size and density were also considered and analyzed.
Taking into account the fact that the distance between
metal catalyst particles strongly influences the morphology
of the etched structures [27, 28], we proposed to form two
different Au-catalyst patterns on the surface of Si
substrate. This modification allowed to obtain the close-
packed Au nanodrop (ND) pattern that generates the
NWs and the well-separated Au NDs, which induce the
NP formation. The antireflective properties of these struc-
tures in comparison with NWs produced by the conven-
tional Ag-MacEtch method were also analyzed.

Methods
For obtaining the nanostructured Si surfaces, the p-type
Si wafers with crystallographic orientation (100) and re-
sistivity 10 Ω × cm were used. The wafers were cut into
samples of 2 × 2 cm2. The chemical cleaning of Si wafer
samples was conducted according to the RCA procedure
[29], which is used in the semiconductor industry for
removing organic and metal contaminants. It included
at the first phase the treatment in a mixture of water,
hydrogen peroxide (35%), and ammonium hydroxide
(27%) H2O/H2O2/NH4OH at a ratio of 5:1:1. The clean-
ing process was carried out at 75 °C for 10 min followed
by rinsing in deionized (DI) water and drying. After-
wards, the specimens were immersed in solution consist-
ing of HF (49%) and H2O (1:10) for 5 min to remove the
layer of native oxide SiO2.
The catalyst pattern formation on Si wafer was realized

through two different deposition approaches, namely, (i)
the self-generation of dendrite-like Ag network from
AgNO3 solution (for Ag-MacEtch) and (ii) the evapor-
ation of an Au thin film (for Au-MacEtch).
In the first approach, Ag nanoparticles were deposited on

Si surface from AgNO3/HF (0.02/4.6 M) solution for 2 min
at room temperature. The chemical etching of Si samples,
coated by Ag nanoparticles, was performed at room
temperature in HF/H2O2 (4.6/0.15 M) system for 3 min.
Illustrated in Fig. 1 is the formation process of SiNWs

on Si substrate using modified MacEtch, which includes
the next steps: thermal vacuum deposition of metal catalyst
(Au) on Si substrate (see Fig. 1a), annealing of samples at

600 °C in vacuum chamber for 30 min to coagulation of an
Au thin film into the nanodrops (Fig. 1b), and etching of
as-prepared samples in the etchant consisting of HF
(49%)+H2O2 (35%)+H2O = 4:1:40 for 10–15 min for subse-
quent NW formation (Fig. 1c).
After chemical treatment, the samples were rinsed

several times in DI water and dried. The residual gold
particles were removed in a low concentrated aqua
regia solution.
The surface morphology of Si samples was examined

using a scanning electron microscopy (106I SEM, JEOL
JSM-U3 SEM, Hitachi S-4800 SEM). The absorption and
reflectance spectra of nanostructured Si surfaces were
obtained on Specord Plus and Shimadzu UV-3101PC
spectrophotometers.

Results and Discussion
Figure 2 shows the top view (a) and cross-section (b)
SEM images of Si substrate after Ag-MacEtch treat-
ment in HF/H2O2. As a result of etching, the verti-
cally aligned SiNW arrays with diameters ranging
from 64 to 240 nm and a height of about 2 μm were
formed on Si substrate (Fig. 2b).
Figure 3 shows the cross-section (a) and top view (b)

SEM images of Si wafer covered with an Au thin film,
which was thermally deposited at 1.5 × 10−5 Torr vac-
uum. The thickness of an Au thin film was determined
by a weight, and it was 50 nm thick, as it could be esti-
mated from Fig. 3a. Furthermore, Fig. 3b shows that the
film is discontinuous, consisting of isolated islands.
The thermal annealing of gold-covered Si specimens

at 600 °C for 30 min resulted in the coagulation of an
Au thin film into nanodrops. Figure 4a shows that the
nanodrops are close-packed with high density and their
mean diameter is about 200 nm. As it was mention
above, to obtain a nanoporous Si surface, the Au nano-
drop catalysts must be well separated on Si substrate.
This was achieved by varying the annealing time. Figure 4b
shows that the increase of annealing time to 54 min led to
the formation of non-close-packed nanodrops with a
diameter ranging from 250 up to 1 μm. The observed

Fig. 1 Schematic view of the SiNW formation on Si substrate by the modified Au-MacEtch process, which is divided in three steps: a thermal
vacuum deposition of Au thin film on Si substrate; b thermal annealing of gold-coated Si substrate for the coagulation of deposited Au thin
film into nanodrops; c etching of the prepared samples in HF/H2O2/H2O solution
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nanodrop size enlargement coincides with the results
obtained by Naydich et al. [30].
Shown in Fig. 5a, b are the SEM images of etched Si

surface after 30 min treatment in HF/H2O2/H2O (4:1:40)
solution. Thus, the pattern from close-packed Au nano-
drops induced the formation of vertically aligned SiNWs
with an average diameter of about 200 nm (Fig. 5a). In con-
trast to 2-μm-long SiNWs produced by Ag-MacEtch, the
5-μm-long SiNWs were obtained by the Au-MacEtch

method at the same etching time and temperature. The
possible explanation for this lies in the effect of thermal
annealing on adhesion properties of Si surface, thus
providing a high binding energy and good contact at
the Au nanodrop/Si surface interface. As a result, the
etching starts immediately along the vertical direction.
Meanwhile, due to a poor contact between Ag particles
precipitated from AgNO3 solution and Si surface, the
lateral etching of the latter may occur at the initial
stage of Ag-MacEtch and the decreasing of total etch
rate, as a consequence.
Another nanostructured Si surface predicted the use

of well-separated Au nanodrops to catalyze the etching
of isolated pores. For this purpose, the non-close-packed
Au nanodrops were used to form SiNPs on Si surface
(Fig. 5b). The diameter of Au-generated pores varies
from 250 up to 1 μm and corresponds to the size of Au
nanodrops.
Figure 6 depicts the reflectance spectrum of the SiNW

arrays prepared by Ag-MacEtch. As can be seen, the
reflectance of 1% is observed mainly in the visible

Fig. 2 Top view (a) and side view (b) SEM images of an array of SiNWs,
produced by Ag-MacEtch in HF/H2O2 solution after 3-min treatment

Fig. 3 Cross-section (a) and top view (b) SEM images of Si substrate
covered with an Au thin film (50 nm) thermally deposited at 1.5 × 10−5

Torr vacuum
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spectrum wavelengths. Figure 7 compares the optical
reflection between clean Si wafer (served as reference),
SiNWs, and SiNPs produced by Au-MacEtch and SiNWs
produced by Ag-assisted MacEtch. As shown in Fig. 7
(curve 4), it is obvious that the reflectance of SiNWs
produced by Au-MacEtch is as low as 1~5%, whereas,
for Si samples with SiNPs produced by Au-MacEtch,
this value corresponds to 17% (see Fig. 7, curve 2). At
the same time, SiNWs produced by Ag-assisted MacEtch
are characterized by lower reflectance (see Fig. 7, curve 3),
which is comparable to those produced by Au-MacEtch.
These results are in good agreement with previous find-
ings that the use of longer SiNWs can result in a lower
optical specular reflectance [31].
In addition, an excelent light absorption of ~95–98%

in the wavelength region above ~750 nm for the case of
SiNWs produced by Au-MacEtch is shown in Fig. 8,
curve 2. The similar was observed for SiNWs produced
by Ag-MacEtch (Fig. 8, curve 4). The curve 3 in Fig. 8
corresponds to the absorption of SiNPs produced by
Au-MacEtch, which is found to be less than the

absorption of SiNWs, but naturally higher than that of
clean Si wafer (Fig. 8, curve 1).
The aforementioned observations support the theory

proposed by Li et al. [32]. It states that from the point of
view of wave optics, the light wavelength in the low
energy region (corresponds to long wavelengths) is much
longer than the distance between the SiNW arrays. Ac-
cordingly, the incident light wave can easily penetrate
through the SiNW array, reaching the underlying Si
layer and interacting with it. This is well evidenced by
the reflectance and absorption spectra of SiNW samples
in the corresponding energy region. This also explains
the higher light absorption of Au-MacEtch-ed SiNWs,
the density of which is quite high, in comparison to Ag-
produced SiNWs with lower density and partial size dis-
tribution. Moreover, the 5-μm-long SiNWs prepared by
Au-MacEtch demonstrate better antireflective properties
in contrast to the 2-μm-long SiNWs formed by conven-
tional Ag-assisted chemical etching.

Fig. 4 SEM images of close-packed (a) and non-close-packed (b) Au
nanodrops coagulated from a 50-nm thick Au film after thermal
annealing of Si substrate at 600 °C for 30 min

Fig. 5 SEM images of SiNWs formed from close-packed Au
nanodrops (a), and SiNPs formed from non-close-packed Au
nanodrops (b) after 30 min of etching of Si substrates in
HF/H2O2/H2O solution
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Conclusions
In conclusion, metal-assisted Si chemical etching was
performed using different approaches to form SiNW and
SiNP arrays. The first one consisting of a deposition of
Ag nanoparticles on Si substrate from AgNO3/HF solu-
tion and subsequent etching in HF/H2O2 resulted in the
formation of 2-μm-long vertically aligned Si nanowires
with diameters ranging from 64 to 240 nm. The second
one included such steps as the thermal vacuum depos-
ition of an Au thin film on Si substrate, annealing of
these samples for the coagulation of an Au film into the
nanodrops, and subsequent etching of as-prepared

samples in HF/H2O2/H2O. By varying the annealing
time, two patterns from close-packed and non-close-
packed Au nanodrops were obtained on the Si surface.
From these patterns, the 5-μm-long SiNWs and SiNPs
with various diameters were formed in the etching
process.
We investigated the influence of modified Si MacEtch

technique on the morphologies and optical properties of
Si substrate surface decorated with SiNWs and NPs to
achieve the desirable antireflection for practical solar cell
applications. Around 1~7% and ~17% of total surface
reflectance were observed over the entire Si-absorbing
region for the case of SiNWs and SiNPs, respectively.
Meanwhile, 5-μm-long SiNWs fabricated by Au-MacEtch
exhibited high absorption of 98% in the visible region of
the spectrum. Therefore, the use of SiNWs obtained by
the modified Au-MacEtch method as the antireflective
material is favored over those prepared by Ag-MacEtch
due to their higher light absorption and lower reflectance.
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Si: Silicon
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Ag-MacEtch in HF/H2O2 (4.6/0.15 M) solution
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Fig. 8 Absorption as a function of wavelength: 1, clean Si wafer; 2,
Si wafer with SiNWs produced by Au-MacEtch; 3, Si wafer with SiNPs
produced by Au-MacEtch; 4, Si wafer with SiNWs produced
by Ag-MacEtch
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